Feasibility of Pulsed Proton Induced Acoustics for 3D Dosimetry
نویسندگان
چکیده
Alsanea, Fahed M. M.S., Purdue University, May 2014. Feasibility of Pulsed Proton Induced Acoustics for Dosimetry. Major Professor: Keith Stantz. Proton therapy has the potential to deposit its energy in tissue with high conformity to the tumor and significantly reduced integral dose to normal tissue compared to conventional radiation, such as x-rays. As a result, local control can be enhanced while reducing side-effects and secondary cancers. This is due to the way charged Particles deposit their energy or dose, where protons form a Bragg peak and establish a well-defined distal edge as a function of depth (range). To date, the dose delivered to a patient from proton therapy remains uncertain, in particular the positioning of the distal edge of the Bragg peak and the lateral displacement of the beam. The need for quality assurance methods to monitor the delivered dose during proton therapy, in particular intensity modulated proton therapy (IMPT) is critical. We propose to measure the acoustic signal generated from the deposited energy from ionizing radiation, in particular a proton beam; and to investigate the feasibility of ultrasound tomographic imaging to map the three dimensional dose (3D) dose from a proton pencil beam. A pulsed proton beam in water was simulated using Monte Carlo (MC) methods, and the pressure signal resulting from the deposited dose was simulated based on the thermoacoustics wave. A cylindrical scanner design with 71 ultrasound
منابع مشابه
Feasibility of quantitative PET/CT dosimetry for proton therapy using polymer gels
A feasibility study of proton beam PET/CT off-line quantitative dosimetry using polymer gels is presented. A newly developed proton-sensitive polymer gel dosimeter (BANG®3-Pro2) is used as a dosimeter and a tissue-equivalent phantom medium for this study. We explore a new approach to correlating measured proton 3-dimensional (3D) dose distributions directly to measured positron emission from in...
متن کاملSU-E-T-73: Investigation of 3D Dosimetry for Proton Therapy Using PRESAGE.
PURPOSE This investigation studies the feasibility of PRESAGE, a 3D polyurethane dosimeter, for relative dosimetry measurements of clinically relevant proton treatments using an anthropomorphic head phantom developed by the Radiological Physics Center (RPC). Performance of a low-LET dependent PRESAGE was evaluated by comparison to the traditionally used radiochromic film, EBT2, and thermolumine...
متن کاملEvaluation of a fast method of EPID-based dosimetry for IMRT and Comparison with 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT
Introduction: Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) and VMAT QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in ...
متن کاملProtons & Carbon Therapy
Monte Carlo water-equivalence study of two PRESAGE® formulations for proton beam dosimetry T Gorjiara, Z Kuncic, J Adamovics and C Baldock 2013 J. Phys.: Conf. Ser. 444 012090 PRESAGE® is a radiochromic solid dosimeter which shows promising potential for 3D proton beam dosimetry. Since an idea dosimeter should be water-equivalent, total depth dose distributions in two PRESAGE® formulations irra...
متن کاملMonte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry
PRESAGE is a radiochromic solid dosimeter which shows promising potential for 3D proton beam dosimetry. Since an idea dosimeter should be water-equivalent, total depth dose distributions in two PRESAGE formulations irradiated by a 62 MeV proton beam were compared with that in water using GEANT4 Monte Carlo simulations. The dose delivered by secondary particles was also calculated. Our results s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016